
AD-A241 337 1
IIllIlt1111111 l lllrl lt liltlliii

Beyond Keyframing: An Algorithmic
Approach to Animation

A. James Stewart
James F. Cremer

TR 91-1207

DTI C May 1991

S ELECTE
OCT 0 8 1991

D 0

Department of Computer Science
Cornell University

.......... dIthaca, NY 14853-7501; ; . .,l--,si., e ap P;o'ed

! L. ,: , :,...,.,c~ (, J ale; its

91-08125

oj,7

Beyond Keyframing: An Algorithmic
Approach to Animation

IN:h - ,A. James Stewart

' " xJ James F. Cremer
" Computer Science Department

:- j Cornell University
,th - Originally written January 1989

Det Abstract

The recent explosion of interest in physical system simulation may
. i soon lead to realistic animation of passive objects, such as sliding blocks

or bouncing balls. However, complex active objects (like human figures
and insects) need a control mechanism to direct their movements. We
present a paradigm that combines the advantages of physical simula-
tion and algorithmic specification of movement. The. animator writes
an algorithm to control the object and runs this algorithm on a phys-
ical simulator to produce the animation. Algorithms can be reused or
combined to produce complex sequences of movements, eliminating the
need for tedious keyframing. We have applied this par.7k igm to control
a walking biped. The walking algorithm is presented along with the
results from testing with the Newton simulation system.

1 Introduction

This paper describes a new paradigm for the control and animation of complex
active objects such as the human figure. This approach allows the animator
to control an object through an algorithm which specifies certain "intuitive"
variables as a function of time and of world state. In the case of human figure
walking, the animator might write an algorithm which controls the acceleration
of the figure's center of mass at one point in the animatiou, and which controls
the angle of the knees at another point. The algorithmic approach to animation
allows this to be done with ease, as demonstrated by the walking algorithm
presented in Section 6.

Witkin and Kass WK88 have combined physical simulation and key-
framing to produce realistic animation of their jumping Luxo lamp. With
their approach the animator uses spacetine constraints to specify several key
points for selected variables. These variables may be positions. velocities,
forces and so on. Combining spacetime constraint equations with the La-
grangian equations of motion and discretizing over time yields a system of
equations that are solved to produce the motion. Since the system is gen-
erally underconstrained (having multiple solutions) a solution can be chosen
to minimize the power, fuel comsumption and so on.

Our algorithmic approach is similar in that the animator can controi
accelerations and forces, but differs in that the constraints can be added
or removed "on the fly" as the algorithm sees changes in the world state
which might not be predictable. In the case of human figure walking the
algorithm might, as the foot touches the ground, remove a foot positioning
constraint and add a leg stiffening constraint. The exact point of contact
is not predictable in advance. Additionally, the algorithmic approach frees
th,- animator from -nnsidering the dynamics of impact and other changes in
kinematic relationships, which are handled automatically by the simulation
component of our system. Incorporating impact into the work of Witkin
and Kass would require either guessing the impact points beforehand or
incorporating a "force field" approach as described in Section 2.

Other work on combining control and simulation has been done by Barzel
and Barr [BB881. Their method of dynamic constraints adds fictitious forces
which pull the simulated objects into specified positions. By doing this in the
framework of a simulation system, the movement of complex physical objects
can be simulated with little work on the part of the animator. A limited form
of control is achieved by attaching forces to points on the object and dragging
these points.

Various other approaches to combine control and physical simulation have
been explored. Wilhelms [Wi1871 blends kinemrtic and dynamic formula-
tions, Isaacs and Cohen [1C871 incorporate inverse dynamics in their simula-
tion systcm, and Brotman and Netravali [BN881 use dynamics and optimal
control to interpolate between key frames.

Some further insights on control can be gained from examining the current
literature in the field of robotics. While this field deals with controlling real,
physical objects, some of the techniques can be applied to produce simpler
animation.

Researchers in robotics have taken various approaches to reduce the com-
plexity of control programs for physical objects. The computed torque
method (see (Cra86.) for robot arms can be viewed as simplifying control
by reducing the gripper to a unit mass. The control program can ignore the
dynamics of the robot arm, only concerning itself with the position of the

2

end effector as a function of time.
In building his one-legged hopping machine, Raibert 'Rai861 partitioned

control along three intuitive degrees of freedom: hopping, forward speed and
body posture. This resulted in surprisingly simple control programs for the
hopping robot. For multi-legged machines, Raibert introduced the idea of a
,virtual leg" which was defined in terms of the robot's physical legs. This
again led to simplified control programs.

Both the computed torque method and Raibert's virtual leg demonstrate
that a proper choice of control variables can lead to simplified control pro-
grams. The problem with this approach is that there is often no simple
closed-form mapping of these control variables onto the forces and torques
needed to control the object. In some cases a compiete system of equations
must be numerically solved to make this mapping. This is called -inverse
dynamics" and is typically rejected by robotics researchers as being too ex-
pensive to use in real-time control. For the purposes of animation, however.
it is ideal.

This is the basis of our algorithmic approach to control. This approach
advocates the selection of a small set of intuitive variables which are used
by the algorithm in controlling the object. The algorithm constrains these
variable with constraint equations, which, when combined with the standard
Newton-Euler equations of motion, produce a system of equations describing
the motion of the simulated object. The system of equations is maintained
by our general purpose physical simulator, called Newton. The Newton sim-
ulator is responsible for integrating the motion of the simulated objects over
time to produce the animation. As described in the next section, Newton
also automatically updates the system of equations as kinematic relation-
ships in the simulation change (one such change would occur as the biped's
foot touches the ground). Finally, Newton provides an interface to allow the
algorithm to add and remove constraint equations to and from the system
of motion equations.

In the event that the control algorithm undercons trains the motion of
the object, constrained optimization techniques are used to choose a motion
that optimizes some criterion while satisfying the constraints imposed by the
algorithm. Our decision to allow control programs to underconstrain the con-
trolled object - necessitating the use of constrained optimization techniques
- is based on the realization that control algorithms often require many fewer
control variables than there are degrees of freedom in the controlled object.
A robot modeled after the human figure may have as many as two hundred
degrees of freedom [Ze182I, while the control program for such a robot would
o,1y rcqu;re twenty or thirty degrees of freedom to accomplish its task. In
programming our walking biped we t'sed at most eleven of its sixteen degrees
of freedom at any given instant.

In summary, the algorithmic approach presented in this paper allows the
algorithm to constrain a small set of intuitive variables. The algorithti is
allowed to underconstrain the motion of the object, in which case a motion
is chosen which optimizes some criterion while obeying the constraints. Fhe
Newton simulator incorporates the constraint equations into its autoinat-
ically rnaintdined system of motion equations and integrates over time to
produce realistic animation.

Section 2 outlines the relevant background of the Newton simulation sys-
tem. Section 3 describes in detail the algorithmic approach, while Section 4
looks at some low-level controllers used by the walking algorithm. Following
this, Sections 5 and 6 outline the biped model and the walking algorithm.
and present results from testing the algorithm.

2 Overview of Newton

The walking algorithm described in this paper has been designed and tested
using the Newton simulation system, part of a large research effort in mod-
eling and simulation at Cornell University. The development of Newton was
inspired by the need for more general-purpose, flexible simulation systems.

Extensive mechanical engineering research has led to many developments
in physical system simulation. The ADAMS [Cha851 and DADS [HL87
systems are examples of large state-of-the-art systems from the mechani-
cal engineering domain. In many ways such systems are very sophisticated:
efficient formulations of mechanism dynamics are supported, fancy numer-
ical techniques for solving equation systems are used, object flexibility and
elasticity are often handled, and so on. Recent work by graphics and ani-
mation researchers [BB88,IC87,MW88,Hah88J in what is termed physically-
based modeling has generally been less sophisticated but has placed greater
emphasis on animation of interesting high-degree-of-freedom mechanisms.

A number of things are still lacking in all of these systems. Typically they
have almost ignored geometric considerations and represented objects simply
as point masses with associated inertias and coordinate systems. Geometric
modeling techniques have matured enough to allow object representations
used by dynamic simulations to include a complete geometric description
usable by a geometry processing module. Furthermore, impact, contact, and
friction are typically handled by current systems in an ad hoc or rudimentary
manner, if at all. In some cases, for instance, any possible impacts must be
specified in advance; in others, a kind of "force field" technique is used, in
which between every pair of objects there is a repelling force that is negligible
except when objects are very close together. In addition, the desire to manip-
ulate high-degree-of-freedom objects suggests that a module for specification
-f control algorithms should be a significant part of a dynamics system.

4

2.1 Newton Architecture

UTsing Newton, a designer can define complex three-dimensional physical ob-
jects and mechanisms and can represent object characteristics from a wide
range of domains. An object is made up of a number of "'models," cach
responsible for organization of object characteristics from a particular do-
main. In most simulations the basic domains of geometry, diynamics, anl
controlled bt-',avior are modeled. A dynamic modeling system, for example,
is responsible for maintain , an object's position, velocity, and accelera-
tion, and for automatically iormulating the object's dynamics equations of
motion. A geometric modeling system is responsible for information about
an object's shape, distinguished features on the object, and computation
of geometric integral properties such as volume and moments of inertia. It
also detects and analyzes object interpenetrations so that an interference
modeling system can deal with collisions between objects.

Newton is composed of three main components: the definition and repre-
sentation module, the analysis module and the report system. The definition
module analyzes high level language descriptions of Newton entities and orga-
nizes the corresponding data structures. The analysis component implements
the top-level control loop of simulations and coordinates the working of vari-
ous analysis subsystems. The report system handles generation of graphical
feedback to users during simulations as well as recording of relevant infor-
mation for later regeneration of animations.

2.2 Dynamic Analysis in Newton
A complex physical object is modeled as a collection of rigid bodies related
by constraints. Newton-Euler equations of motion are associated with each
individual rigid body.i At the time an object is created the equations are of
the form

Mi -- 0

j× W X JW = 0.

where m is the mass, i is the second time derivative of the position (ie. the
acceleration), J is the 3 x 3 inertia matrix, and w and W are the rotational
velocity and acceleration, respectively.

A specification that two objects are to be connected with a spherical
hinge is met by the addition of one vectorial constraint equation and the
addition of some terms to the motion equations of the constrained objects.
For a holonomic constraint such as this one, the second derivative of the
constraint equation can be used along with the modified motion equations

'Newton is capable of using dynamics formulations other than the one outlined here. We
are also working on incorporating non-rigid bodies into the system.

5

to solve for object accelerations and reaction forces. Thus, the equations
above become

mitt = Fhtnge

Jp].J W1 " =J l CA I A Fhtnge

rm2 2 = - F.nge

J2,2-J J2W2 =c 2 '< -Fhn

4- , X + 4; 'K (,; X c1 - 2 +- W2 AC2 W2 < (1a2 - C2

where ci is the vector from object i's center of mass to the location of the
hinge and Fhange is the constraint force that keeps the objects together. Note
that the last equation above is the second time derivative of the holonoiriic
constraint equation r, + c, = r2 -+ c2 for spherical joints. Other kinds of
hinges commonly used in Newton include revolute or pin joints, prismatic
joints, springs and dampers, and roiling contacts.

If gravity is present during the simulation the system will automatically
add gravitational force terms to the objects' translational motion equations.
The system keeps track of the constraints responsible for the various terms
in the motion equations. Thus, constraints, and their corresponding motion
equation terms, can be removed at any time without necessitating complete
rederivation of the system of motion equations.

Using this method of dynamics formulation, closed-loop kinematic chains
are handled as simply as open chains. Though the formulation does lead to
a large set of equations, the matrices are very sparse and often symmetric.
Thus, acceptable efficiency is achieved by the use of sparse matrix solution
techniques.

2.3 Event handling, impact and contact

Newton, unlike many other simulation systems (though see (Fea851), can
automatically and incrementally reformulate the motion equations ds excep-
tional events occur during simulations. One kind of exceptional event is a
change in kinematic relationship between objects. Figure 1 shows a block
that was initially sliding along a table top. After some time the edge of
the table is reached and the contact relationship changes from a plane-plane
contact to a plane-edge contact. Still later the contact is broken altogether.
These changing contact relationships are automatically detected by Newton.
The system of motion equations and the related constraint equations are
automatically maintained by Newton to reflect these changing relationships.

During the course of a simulation, a variety of events can occur that
require special processing. Newton's event handler is primarily responsible
for detection and resolution of impacts, for analysis of continuous contacts

6

Figure 1: Changing Kinematic Relationships

between objects and corresponding maintenance of temporary hinges, special
kinds of hinges that model one sided constraints between objects in contact.
and for handling of events specified by control programs that necessitate
changes in the constraint set. For example, the walking algorithm might tell
the event handler to notify it when the biped's foot touches the ground so
that it can change the constraint equations.

The geometric modeling subsystem is responsible for detecting and an-
alyzing impacts and interpenetrations. In the usual method of handling
impacts, the dynamic analysis module formulates impulse-momentum equa-
tions in a manner completely analagous to the formulation of the basic
dynamics equations, and solves these equations to produce the instanta-
neous velocity changes caused by the impact. The details of Newton's meth-
ods for handling impact, contact and other exceptional events are given in
[HH87,HH88,CS88,Cre89J.

3 The Algorithmic Approach

In Newton's automatically-generated equations of motion certain quantities
are considered to be unknoums. A system of simultaneous linear equations is
solved at each time step to produce values for the unknowns. These values
are integrated over time to produce the simulated motion. Typically, the
unknowns consist of accelerations and joint constraint forces, while positions,
velocities and joint control torques are knoums.

In the algorithmic approach, the programmer controls "intuitive" quanti-
ties defined as linear combinations of the unknowns. The programmer might,
for example, want to control the acceleration of the center of mass of a bipe,.
without explicitly controlling each component of the biped. To do this, the
algorithm must define the acceleration of the center of mass in terms of the
accelerations of the centers of mass of the primitive components of the ob-

procedure initialize

begin
add-equation "c,,"

end

procedure controller(time

begin
r =f(time

end

Figure 2: The Format of an Algorithm

ject. Over the course of execution, the algorithm must supply the desired
acceleration of the center of mass at each point in time.

Figure 2 shows the format of a control algorithm. For the sake of clarity
the algorithms will be described in a Pascal-like notation2 . Two procedures
are always present: one to initialize the algorithm (called initialize) and
one to be executed repeatedly over the course of the task (called controller).
The controller procedure has access to the complete state of the system.
The algorithm of Figure 2 trivially defines and controls the acceleration of
the center of mass of an object (the function f must be defined elsewhere).

Defining and controling a three-dimensional vectorial quantity like the
acceleration of the center of mass has the effect of adding three constraint
equations to the system of simultaneous Linear equations that describe the in-
stantaneous motion of the object. By considering joint torques as unknowns
in this augmented system of equations, the system can be solved to produce
motion that satisfies the additional constraint equations. This is a simple
application of inverse dynamics.

For an object with n degrees of freedom the control algorithm can define
and control up to n independent scalar quantities3 . If fewer than n equations
are added the system of motior equations is underdetermined, and many dif-
ferent solutions could satisfy the constraints of the control algorithm. In this
case the algorithm must guide the selection of a solution by providing a
cost function which is quadratic in the unknowns. A standard numerical
optimization technique is used to compute a solution that instantaneously
(for each point in time) minimizes the cost function while obeying the algo-
rithm's constraints. This is different from the approach of Witkin and Kass

'The algorithms are, for now, written in Lisp.
3The additional definitional equations could make the system of motion equations incon-

sistent. This would be an error on the part of the control algorithm.

8

WK88, who optimize over the whole animation. This reflects the different
philosophies of the two sy.tems: Witkin and Kass specify all of the infor-
mation beforehand, while we let the control algorithm make decisions dur-Lmy
the animation. Such "on the fly" decisions make it impossible to do global
optimization, but allw much more versatility in the control algorithm by
not requiring a prmom know!edge of impacts and other exceptional events.

In summary, the programmer designs an algorithm in a high-level coin-
puter language to control intuitive degrees of freedom of the)bject. These
degrees of freedom are detined as linear combinations of the unknowns in
the object's equations of motion. An augmented linear systein of equations
!escribes the instantaneous behavior of the object; this system can be solved

to produce the object's configuration at each point in time. If the system
is underdetermined, the algorithm can provide a cost function to guide the
choice of a solution.

In the remaining sections we describe the application of this approach to
the design of a simple walking algorithm.

4 Low-level Controllers

In designing algorithms with Newton we found ourselves frequently using PD
controllers4 and curve-fitting controllers to control the "trajectory" of many
of the defined quantities. In controlling the biped, for example, a quintic
interpolation was used to plot the trajectory of the heel, and a PD controUer
was used to orient the foot before it struck the ground. A smaf1 library of
these controUers is used in the biped algorithm, and will be described here.

PD controllers are used in the biped algorithm to control orientation,
position and joint angle. Each controUer adds an equation to the system
of motion equations which defines the second derivative of the quantity in
terms of the first derivative and the quantity itself. The procedure in Fig-
ure 3 produces accelerations to move an object to within 1% of a position
x-desired within a given time delta-time. The quantities z, v and a are
data structures representing state variables of the controlled object. These
data structures are used by the add-named-equation function to create the
appropriate equation.

Execution of the procedure in Figure 3 causes a named equation to be

4A PD controller (Proportional, Derivative), also known as a "spring and damper" con-
troller, relates the second derivative of a variable linearly to the error in the variable's first
derivative and to the error in the variable itself. The equation is i+ 1 i+ L(z - Zdesared) = 0
for some appropriate r. PD controllers are used extensively in robotics to move robot joints
into specified positions by calculating the joint acceleration as a function of the position and
velocity errors. A good explanation can by found in [Cra861. Bartel and Barr [BB881 use a
form of PD controller to achieve their dynamic constraints-

9

procedure position-.ith-PD(constraint-name, object,
x-desired, delta-time

var ., v, a: quantity

T: real

begin

z get-posltlon-4uantity(object)

v get-velocity-quantity(obJect)
a get-acceleration-quantity(otject

r - delta-time log(.01)

add-named-equation(constrain.-name,
a u - -L(z - x-desired) = 0

end

Figure 3: PD ('ontr-ler Used in Positioning

added to the system of motion equations. This equation wilU continue to
affect the motion of the object until it is explicitly removed by the control
algorithm.

A complete list of controllers available to the biped walking algorithm
is shown in Figure 7 at the end of the paper. Those with quintic in their
nanv do quintic interpolation to achieve the desired position and velocity in
the desired time. Quintic interpolation was chosen over cubic interpoletion
to eliminate "jerk" (discontinuous acceleration) from the beginning and end
of the trajectory.

5 The Biped Model

The simulated biped is composed of a torso, two legs with knee joints and two
feet with toe joints. This model was adapted from a description in fMcM8O4 ,

and is shown in Figure 4. The hips and ankles are three degree of freedom
spherical joints, while the knees and toes are one degree of freedom revolute
joints, making a total of sixteen degrees of freedom. The biped is about six
feet tall with moments approximating those of a human being.

We hope to improve this model by incorporating joint limits and elas-
tic tendons. McMahon suggests that, during walking, energy is stored in
stretched tendons and is released when the stretched leg swings forward
(McM841. This idea might be used to simplify the walking algorithm de-
scribed in the next section.

Newton's impact handling capabilities have not vet been extended to

10

S I .t I an

Figure 4: Simulated Biped Model

accurately model the impact of the feet upon the ground. Instead, impact is
simulated by adding an extecnal force and torque to the feet that holds them
level with the ground until they are released with an explicit command from
the control algorithm. This is as though the biped was walking with magnetic
shoes on a steel plate. Very shortly we expect to adapt the algorithm to
incorporate realistic impact.

6 The Walking Algorithm

An abbreviated version of the walking algorithm is shown in Figures 8 and
9, which can be found at the end of this paper. The algorithm cycles
through a set of six states: swing the right leg, land the right foot, lift
the leit foot, swing the left leg, land the left foot, lift the right foot and
then repeat the cycle. In the ,wing phase, a quintic trajectory is plot-
ted for the swing foot with move-heel-to-t-arget, while the stance leg is
stiffened with set-angle-with-PD and the foot is oriented for landing with
orient-with-PD (shown under START in Figure 9). In the landing phase,
the leading leg is stiffened as the foot nears the ground. Following this, the
takeoff phase flexes the trailing leg, causing the trailing foot to lift from the
ground. Once the trailing toe is bent to 10' the flexing ccnstraint is removed
and the suing phase begins for the trailing leg.

The largest number of constraints are applied during the sunn phase, as
shown in Table 1. Since the biped has sixteen degrees of freedom (DOF) it
remains underconstrained at all times. A quadratic cost function is therefore
defined (in initialize of Figure 9) in order to fully determines the motion

11

Constraint Name DOF Constrained Item
TORSO-CONSTRAINT 3 torso orientation in 3 dim
L-KNEE-ANGLE I angle of revolute knee joint

R-HEEL-TRAJ 3 heel acceleration in 3 dim
R-FOOT-ORIENTATION 3 foot orientation in 3 dim
R-TOE-ANGLE I angle of revolute toe joint

Table 1: Swing Phase Constraints

HE0 ED 0E
~~00 a aag

Figure 5: Walking Cycle

of the biped. The cost function is a weighted sum of the translational and
angular accelerations, and of the difference between the torso translational
acceleration and some acceleration defined by a function F which tries to
keep the torso mid-way between the two feet.

We found that a cost function which minimizes instantaneous transla-
tional and rotational acceleration usually produces smooth motion. In the
case of the simulated biped, the cost function causes the constrained heel
acceleration to be achieved by a linear combination of small accelerations of
many components of the body, rather than a few large accelerations of those
components which are near the heel. We have observed that the combina-
tion of many small accelerations yields more stable motion than large, local
accelerations.

The walking algorithm was tested with the Newton simulation system.
Figure 5 shows ten frames in which the biped completes a full cycle of the
six phases described above. The full simulation consisted of twenty seconds
of straight-line walking on a flat surface and generated the statistics shown
in Figure 6. The version of the algorithm that produced these statistics had
the biped increase speed at 4.0 seconds, as can be seen on the graphs.

12

6.2F 0,

O . 253 1.0 1. . 0 .0 2 5. 3 .

'Left hee.. .It ... light heel 551e..

., , .5 5 ' . 6.6

1 2.1;26

.0-d

o.6 2.5 5.6 7.5 6,6 1.o 2.5 5.6 75 16.6

Fiur 6:Nwo ttitclOtu

Left eeltmust besp (ci) 6i,.1 H owee ifteelty (id mo)7.... . D ."

were extended to include elastic tendons the number of constraints might be
reduced. In this case, the swing phase would not have to specify a trajectory
for the heel. Instead, no torque would be appled in the swing leg; it would
be pulled forward by the stored energy of the stretched tendons. This might
approximate the "ballistic walking" described by McMahon[McM84.

We feel that a high-level algorithm should geatly underdeermine the
motion of the controlled object. Our philosophy is to incorporate in the
model many "passive elements" - such as springs, dampers and joint mits
- which reduce the number of constraints needed by the control algorithm.
The algorithm then has the job of guiding, rather than forcing, the motio
of the object.

13

7 Summary

We have presented an algorithmic approach to control. This approach allo ws
the animator to choose intuitive degrees of freedom by which to control an
,bject. The control algorithm adds and removes constraint equationi i,

the flv" as the world state changes; a pror knowledge of the exact ,no-
rnient of each state change is not required. With the algorithmic approach.
all consideration of dynamics and impact is left to the Newton simulatihn
system. The burden on the animator is further reduced by allowing underde-
termined specification of motion through the use of constrained optinmizatoi,,,
techniques.

We have presented an algorithm to control a simulated biped, along with
results from its execution on the Newton simulation system The algorithm
has the advantage of being intuitive, simple to program, and reusable.

('nhke keyframing, the algorithmic approach does not require the animia-
tor to repeat the work of creating new key frames for every walking sequence.
Unlike keyframing, the algorithmic approach allows various algorithms to be
combined to produce long animated sequences. We believe that in the future,
animating complex physical objects will require a structured, algorithmic ap-
proach similar to that presented in this paper.

8 Future Work

We will incorporate elastic tendons and joint friction into the Newton simu-
lation system and modify the walking algorithm accordingly. From there we
hope to develop a suite of algorithms to allow a biped to walk, turn, climb
stairs, manipulate objects, and so on. In keeping with the structured ap-
proach presented in this paper we will attempt to combine these algorithms
to have the biped perform complicated tasks. In carrying an object up a
flight of stairs the high-level algorithm would combine subroutines to pick
up the object, walk to the stairs, climb the stairs and deposit the object.

Acknowledgements

This work was supported in part by NSF grant DMC 86-17355, ONR grant
N0014-86K-0281 and DARPA grant N0014-88K-0591. Support for James
Stewart is provided in part by U.S. Army Mathematical Sciences Institute
grant U03-8300 and NASA training grant NGT-50327. The Newton system
is being developed in Common Lisp on Symbolics Lisp Machines and can be
used on other machines supporting Common Lisp.

14

References

BB881 Ronen Barzel and Alan H. Barr. A modeling system based on ,dy-
namic constraints. In Computer Graphics (SIGGR.4PH 88), pages
179-188. AC.I, August 1988.

BN8M Lynne S. Brotman and Arun N. Netravali. lotion interpolation
by Optimal control. In Computer Graphics (SIGGRA PH 88.), pages
309-315. ACM. August 1988.

(ha85 I. Chace. Modeling of dynamic mechanical systems. Presented
at the CAD/CAM Robotics and Automation Institute and Inter-
national Conference, Tuscon, Arizona, February 1985.

*Cra861 John J. Craig. Introduction to Robotics: Mechanics and Control.
Addison Wesley, 1986.

Cre891 James F. Cremer. PhD thesis, Cornell University, in preparation,
1989.

iCS881 James F. Cremer and A. James Stewart. Using the newton sim-
ulation system as a testbed for control. In Proceedings of the 3rd
IEEE International Symposium on Intelligent Control, 1988.

iFea851 Roy Featherstone. The dynamics of rigid body systems with multi-
ple concurrent contacts. In 0. D. Faugeras and G. Giralt, editors,
Robotics Research: The Third International Symposium, pages 191
196. The MIT Press, 1985.

Hah881 James K. Hahn. Realistic animation of rigid bodies. In Computer
Graphics (SIGGRAPH 88), pages 299-308. ACM, August 1988.

HH871 C. M. Hoffmann and J. E. Hopcroft. Simulation of physical systems
from geometric models. IEEE Journal of Robotics and Automation,
RA-3(3):194-206, June 1987.

1HH881 C. M. Hoffmann and J. E. Hopcroft. Model generation and modifi-
cation for dynamic systems from geometric data. Presented at the
NATO Workshop on CAD-based Programming for Sensor-based
Robots, II Ciocco, Italy, July 1988.

[HL871 E. J. Haug and G. M. Lance. Developments in dynamic sys-
tem simulation and design optimization in the center for computer
aided design: 1980-1986. technical report 87-2, University of Iowa,
February 1987.

15

LIC87. Paul M. Isaacs and Michael F. Cohen. Controlling dynamic sir!iu-
lation with kinematic constraints, belidv;,r constraints arid inverse
dynamics. In C'omputer Graphics (S!GGRA PH 87), pages 215 224.
ACM, July 1987.

MIcM84-[T. A. McMahon. Mechanics of locomotion. The Inter-national
Jlournal of Robotics Research, 3(2):4-28, 1984.

N IW88, Matthew Moore arid Jane WAilhelms. Collision detection and re-
sponse for computer animation. In Computer Graphics(I-
GRAPH 88), pages 289-298. ACM, August 1E

Rai*86' M. H. Raibert. Legged Robots That Balance. The MIT Press, 1986.

Wil87! .J. Wilhelins. tsig dynamic analysis for realistic animation of
articulated figures. IEEE Computer Graphics and A4pplications,
7(6):t2-27, 1987.

X K 881 Andrew Witkiii anid Michael Kass, Spacetime constraints. [In Corn-
puler Graphics (SIGGRAPH 88), pages 159-Mb. ACM, August
1988.

ZeI821 D. Zeltzer. Motion control techniques for figure animation. IEEE
C'omputer Graphics and Applications, 2(9):53-59, 1982.

16

posit ion-eith-pD constraint -nafe, object, td, At
position-paxnt-eith-MD consitraint -mn*, object, point-on-object, zj, At
orient-uith-PD(constraint -name, object, 4d, It)
set-anglo-uxth-MD constraiLnt -nano, joint, ad, It

posit ion-uicki-quintic(constraint-name, object. xed, vd. At
posit ion-point-with-quintic (constr at -n*ae , object, point -on-object. , Z, vj, A
orient -with-quaint icC(constraint -nano, object, *dg, +d, At
set -angle-uith-quinticC(cons tra int -nano, joint, 6d. ad, At

Figure 7: Low-level Contro~ers

const tia.-in-air =0.5 s
stride = 0.5 a
direction = (1 0 0)
inside-step-fract ion = 20t
heel--striko-speed = -0.05 U/s
heel-I-strieo-speed = 0.02 U/s
foot-strike-orientation = 10* about (0 0 1)
torso-orientation = -10* about (0 0 1)

war phase: Atart r-suing r-land 1-lift 1-takeoff 1-suing 1-land r-lift r-teakooff

procedure mov-hee-to-target(constraint -nane, foot, other-foot, hip, other-hip

war target-:, target-v, hip-to-hip: vector

beg in
hip-to-hip - get-positiuC TORSO, hip)-got-pouitioa(TORSO, other-hip

target-z get-poaitioa(ether-foot, *Rfl) + stride x direction
+ inside-slep-fractioa X hip-to-hip

target-v - heel-Y-strike-speed x (0 1 0) +heel-I-strike-speed x direction

peit ion-po in*-wish-qains ic (coast ra it-nane, foot, 3ZM.. target-:, target-v. time-in-air
ead

Figure 8: Definitions for the Walking Algorithm

17

procedure iitaliz.

lot F Kp(!(rj~ 10 03 - ?t.,.) 1 K(# 08 l ,.0g -

begi
qua draute-eaat - 2~ -20

phase = START7
and

procedure controller(time

begin
case phasf of

START:
phase = K-SWING
ori.nt-with-PD(TORtSO -CONSTRII IT, TORSO, torso -orieantat ion. 2.0s
move-hool-to-target(R-BEEL-TXAJ, A-REEL, L-UEm.. &-RIP. L-HIP)
set-angle-with-PO L-KUIE-LUGLE. L-9199, 1750, 0.1 s)
orient-sith-PO R- FOOT- OIIENT&TIO01,ft-FOOT, foot -str ike-or ientat ion, tine-in-air
s9%-sagle-vith-PD(R-TOE-AIGtI, f-TOE-JOIIT, 0*, tine-in-air

Kt-SWING:
if distance-to-target(C -FOOT I .0.01 a then

phase K -LANDING
remove- coast ra in%(I-Him.-TXAJ
set-angle-uxth-PD 9-I3IB-AUGLE. R-KNtER, 1750. 0.05 a

K-LANDING:
it heel -has -touched (I-FOOT) then

phase -L-TAK3OVF
remove -consira inta(&-FOOT -OITATXOI , I-TOR-ANGLE, L-1199-ANGLE
set-angle-with-PO L-111E-AIGLE, L-9199, 1600, 0.1 a

L-TAK 301?T:
if 301.nt-angloe(L-TOE-JOIUT 110* thon

phase - L-SWING
renmove-constrazat (L-I3511- iGLE
move -heel-toe-largo% (L-IZL-TI.AJ, L-EEEL I-MM.L L-UIP. IIP
orient-with-MO L-FOOT-OINTATIOE, L-FOOT. foa-strike-orientat ion, time-in-air
se - agle-with-PO L-TOK-AIGLI, bL-TOR-JOINT. 180 * Sine- La-air

Cases L-SWING, L-LANDING, and R-TAK3OI'V
cirt aalogous to the preaesae thva. cases.

and
end

Figure 9: Abbreviated Walking Algorithm

18

DA/f

